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The prevalent paradigm in robot learning attempts to generalize across environments, embodiments,
and tasks with language prompts at runtime. A fundamental tension limits this approach: language is
often too abstract to guide the concrete physical understanding required for robust manipulation. In this
work, we introduce Contact-Anchored Policies (CAP), which replace language conditioning with points
of physical contact in space. Simultaneously, we structure CAP as a library of modular utility models
rather than a monolithic generalist policy. This factorization allows us to implement a real-to-sim iteration
cycle: we build EgoGym, a lightweight simulation benchmark, to rapidly identify failure modes and refine
our models and datasets prior to real-world deployment. We show that by conditioning on contact and
iterating via simulation, CAP generalizes to novel environments and embodiments out of the box on
three fundamental manipulation skills while using only 23 hours of demonstration data, and outperforms
large, state-of-the-art VLAs in zero-shot evaluations by 56%. All model checkpoints, codebase, hardware,
simulation, and datasets will be open-sourced.
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Figure 1: We introduce Contact-Anchored Policies (CAP), a method to conditioning multimodal policies
with physical contact information. Such policies are able to generalize zero-shot to novel objects and
scenes with orders of magnitude less data, compute, and model parameters compared to frontier behavior
model, while outperforming them on atomic skills trained with CAP.

Corresponding author: Zichen Jeff Cui <jeff.cui@nyu.edu>


https://cap-policy.github.io
mailto:jeff.cui@nyu.edu

Contact-Anchored Policies: Contact Conditioning Creates Strong Robot Utility Models

1. Introduction

Now is the age for general robots. Yet, the resource requirements of training general policies is burgeoning
constantly. Today it is measured in thousands: of human data collection hours, GPU cluster size, and
numbers of real world evaluations. And even with all the resources, their generalization abilities remain
more limited than a young child or household pet. What is the cause behind such a stark gap? One
probable cause is that our current pipeline of learning general physical behavior may be backwards.
Even though language is only a recent acquisition on our evolutionary ladder of skills, many of our
current general robot policies are built on top of large language model bases. Folk wisdom holds that
this internet-trained language backbone is necessary for generalization because language conditioning is
how diverse behavior is elicited from the model. However, language is as a medium for information for
robot suffers from a few critical problems. First, language is imprecise: robotics needs precise spatial
awareness which is not easy to convey in natural language abstractions. Second, language understanding
comes at a cost of increasingly large model size leading to inefficient inference. These models are full of
extraneous information, like distance between the earth and moon, that may be entirely unnecessary for
a general robot.

In this work, we propose a simple fix: instead of natural language, we propose physical contacts as the
policy medium. Instead of modeling the robot observation and action together with an underspecified
language description of the task, we model observation and action jointly with physical contact the
robot makes with the environment. We call such policies Contact-Anchored Policies (CAP). With our
simple change, we are able to train general policies for three set of common activities: picking up objects,
and opening and closing doors and drawers; all from only 23 hours of human demonstrations. On
zero-shot evaluations in fully novel scenes and objects, our models outperform state-of-the-art generalist
vision-language-action models such as 7 5 (Physical Intelligence Team et al., 2025). Moreover, since
our policies are trained on handheld gripper data, we are able to deploy our policies on multiple robot
embodiments out of the box.

Developing such policies efficiently also requires multiple iterations on modeling and dataset curation.
Typically, such iterations require training and evaluating models on the target set of tasks. To take
advantage of the facts that (a) our target tasks are factored and (b) our primary goal is zero-shot
environment and object generalization, we develop a lightweight simulation benchmark, EgoGym, as
our key iteration metric. This benchmark focuses primarily on object and scene diversity and trades off
photorealism for speed. As our primary goal is generalization, we find that success in these simulation
environments under distribution shift is a great metric for capturing the emergence of general behavior.

2. Background

Behavior Cloning Behavior cloning (BC) is one of the primary ways of teaching robots intelligent
behavior from humans. BC casts the problem of learning a robotic behavior policy 7 that maps robotic
observations o € O to robotic actions a € A as a supervised learning problem. Given a dataset D C O x A
of human demonstrations trajectories, BC defines a policy class II and an loss function £ and trains a
policy 7 € II that minimizes the loss function £(D). There has been significant research on finding the
best learning objective (Florence et al., 2021; Shafiullah et al., 2022a; Chi et al., 2023; Lee et al., 2024)
as well as methods for collecting BC datasets, such as leader-follower teleoperation (Wu et al., 2023;
Zhao et al., 2023), VR teleop (Cheng et al., 2024; Iyer et al., 2024), and handheld tools (Song et al.,
2020; Shafiullah et al., 2023; Chi et al., 2024).
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Figure 2: The process of data labeling, training, and inference for Contact-Anchored Policies. (a) During
training, we detect the contact point from the data and label the trajectory with hindsight relabeling.
(b) During inference, we use a user click or VLM conditioned on user command to derive the contact
condition. In both cases, the contact tokens and visual tokens get concatenated and passed to the model
which uses them as input to predict the actions.

Vector Quantized Behavior Transformer (VQ-BeT) VQ-BeT (Lee et al., 2024) is a behavior cloning
algorithm designed to learn robotic behaviors from large, multi-modal behavior datasets. VQ-BeT is
a two-stage algorithm. The first stage finds a self-supervised discrete action representation using the
actions from the dataset by training a Residual Vector Quantized Variational Autoencoder (VQ-VAE). Then,
second stage trains an autoregressive transformer to predict the tokenized actions given the observation
sequence. In this work, we use VQ-BeT for our behavior modeling as autoregressive architectures are
more straightfoward to condition compared to diffusion models (Chi et al., 2023; Barreiros et al., 2025),
and they lead to smaller and faster models.

Robot Utility Models The advent of large robotic datasets (Padalkar et al., 2023; Shafiullah et al.,
2023; Khazatsky et al., 2024) has training policies that can generalize to novel environments, objects,
or tasks. Many large, proprietary models focus on task-level generalization (Black et al., 2024; Bjorck
et al., 2025; Physical Intelligence Team et al., 2025) as the primary generalization axis. Our work is
inspired by Etukuru et al. (2025) which showed that performing a single task generally in diverse scenes
and robots can be done efficiently, with a few hours of demonstrations, with the diverse, high quality
data and a multi-modal behavior cloning policy. This work also introduces verifier-guided retrying for
robotics, where with guidance from an automated verified, a robot gets to retry a task until it is stuck or
successful.
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3. Contact-Anchored Policies

3.1. Data Collection and Contact Annotations

- e -
Handheld gripper for Robot gripper for
data collection policy deployment

Figure 3: Our data collection tool and matching robot deployment gripper.

3.1.1. Gripper Hardware Design

To minimize the embodiment gap between data collection and robot inference, we design a low-cost,
3D-printable gripper compatible with both handheld operation and robot mounting. The handheld
gripper is designed to be lightweight, ergonomic, convenient, and strong. Apart from the iPhone, the
gripper itself consists almost entirely of 3D printed parts. We've designed the trigger handle such that
the closing mechanism feels natural, allowing for prolonged use. Its small form factor makes it easy to
throw into a backpack, and collect data in any location. The gripper design comprises an angular jaw
2-fingered mechanism, that allows for greater force and pinching of small objects. Similarly, the robot
end-effector features compliant, back-drivable fingers with deformable foam padding for stable grasping
across a diverse range of rigid and deformable objects. We use an iPhone 13 Pro as the primary sensor
suite for both data collection and inference. The phone is rigidly mounted to the gripper chassis. For
data collection, the gripper fingers are actuated by a handle. For inference, the same gripper modules
are driven by a Dynamixel XL430 servo. This unified design ensures that the observation space remains
consistent between the expert demonstrations and the robot’s policy execution.

3.1.2. Data collection

We collect expert demonstrations for three primary tasks: Pick, Open, and Close. Data is collected with
the AnySense i0S application (Bhirangi et al., 2024). The app records synchronized RGB-D streams and
6-DoF camera poses via ARKit visual-inertial odometry at 30Hz. Following Etukuru et al. (2025), we
prioritize collecting data in diverse environments with varying lighting conditions, background clutter,
and task object form. Trajectories with tracking loss, significant jitter, or failed task completions are
discarded. The final dataset contains 20,365 demonstrations (23.1 hours) across 424 environments,
consisting of:

* Pick: general object pickup; 14,606 demonstrations (16.3 hours) across 289 environments.
* Open: opening drawers and cabinet doors; 3,690 demonstrations (4.7 hours) across 87 environments.
* Close: closing drawers and cabinet doors; 2,069 demonstrations (2.0 hours) across 48 environments.
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3.1.3. Data preprocessing

Observation: we resize RGB and depth images to 224 x 224, and augment the data with horizontal flip
on the RGB-D observations and the corresponding camera odometry. We find that this helps the policy
generalize to left-right symmetries such as cabinet doors. Action: the action space consists of the delta
end-effector (EE) pose and the gripper aperture. Since we mount the iPhone rigidly onto the gripper,
we can extract the delta EE pose directly from the iPhone camera pose trajectory. Visual gripper state
estimation: we extract gripper action labels directly from the visual observations using SAM2 (Ravi et al.,
2024). For each frame, we segment the left and right fingers and compute the centroid of their respective
masks. The distance between these centroids is linearly mapped to a scalar € [0, 1], representing fully
closed to fully open. Further details are in App. Section A.1.

3.1.4. Hindsight contact labeling

We define the Contact Anchor as a 3D coordinate p where the policy is expected to interact with the
object. To generate these labels for training, we do the following steps (illustrated in Fig. 2):

* Contact Detection: We first identify the timestep of contact, ¢ = ¢. For Pick and Open tasks, this is
naturally defined as the frame where the gripper aperture ceases to decrease, signaling that the fingers
have made physical contact and halted against the object geometry. For the Close task, we label the
contact frame during data collection by closing the grippers upon contact with the door.

* Anchor Definition: At ¢ = ¢, we instantiate the contact anchor p. as the 3D coordinate centered
between the gripper fingers in the camera frame.

* Anchor Propagation: For all previous timesteps ¢ < t., we generate contact anchors with hindsight
relabeling by back-projecting p. using the recorded camera odometry. Let A; € SE(3) denote the
camera pose in the world frame at timestep ¢. The contact anchor in the camera frame for all previous
timesteps ¢ < t. is then simply given by p; = A; ' A.p. as the gripper approaches the contact. For
the remainder of the episode ¢ > ¢, in tasks such as Pick or Open, the object moves rigidly with the
gripper as the gripper establishes contact. We freeze the anchor and simply repeat p. until the end of
the episode.

3.2. Policy Learning

We formulate the policy learning as a conditional imitation learning problem, where the robotic policy
(a4 n|0t—k:t, Pe—k:¢) Predicts actions given a history of visual inputs and contact anchors. We implement
this using a Vector-Quantized Behavior Transformer (VQ-BeT) (Lee et al., 2024) with an observation
context length of & = 3. For the visual (RGB) observation, we pretrain a ResNet-50 backbone with
MoCo (Chen* et al., 2021) on our dataset. For each timestep, we embed the 224 x 224 RGB input into
a feature vector z, € R?0, Separately, the contact anchor p; € R3, expressed in the current camera
frame, is linearly projected to a contact embedding z. € R?*6, We concatenate these embeddings to
form the observation token s; = [z,, z.]. We feed a context window of observation tokens s;_.; into
VQ-BeT to predict the demonstrated actions. Each action a; consists of the delta end-effector pose and
the continuous gripper position command. By conditioning the action distribution jointly on the RGB
observation and the contact anchor, the policy adapts to diverse object geometry while anchoring its
manipulation trajectory to the intended interaction point.
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3.3. Contact Prompting during Inference

Unlike training, where contact anchors are derived from hindsight, inference requires an initial anchor py
before execution. Given the initial RGB-D observation, a pixel coordinate (u,v) is selected on the object
of interest. This selection can be performed manually, or by querying an off-the-shelf VLM (e.g. Gemini
Robotics-ER 1.5 (Team et al., 2025)) with a text prompt (“point to the red mug”). Then, we deproject
the 2D pixel (u, v) using the depth map value d,,, and camera intrinsics K to obtain the initial contact
anchor in the camera frame, py = d,,, K ![u, v, 1]7. As the robot executes the policy, the camera frame
moves with the gripper. We track the anchor in the camera frame using the robot’s forward kinematics,
which provides higher accuracy than visual-inertial odometry. Let A; € SE(3) be the camera pose in the
world frame at time ¢, derived from the robot’s kinematic chain; the anchor p; is simply updated via
ps = A7 Agpo, so that the policy sees a consistent contact anchor in the world frame (see Fig. 2). After
the gripper closes, we freeze the contact anchor to match the training data distribution.

3.4. Simulation-in-the-loop Development
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Figure 4: EgoGym: a lightweight simulation-in-the-loop environment used for quick development and
evaluation of Contact-Anchored Policies (CAPs). EgoGym enables fast checkpoint evaluation and failure
mode discovery across Pick, Open, and Close tasks using procedurally generated scenes.

To support rapid iteration and evaluation of CAPs, we develop EgoGym, a lightweight simulation suite
used during policy training and development. It is designed with the motivation of (i) providing training
signals beyond validation loss, which poorly correlates with real world performance, and (ii) accelerating
CAP refinement by detecting failure modes prior to real-world deployment, and (iii) enabling the quick
calibration of grasping thresholds we set for our policies.

EgoGym is implemented in MuJoCo (Todorov et al., 2012) and trades off visual realism in favor
of scene diversity and execution speed. This allows it to run sufficiently fast to be included directly in
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the training loop of all 3 of our policies, enabling frequent checkpoint evaluation to detect overfitting.
We induce diversity through task-specific procedural scene generation. For our pick task, objects are
sampled from a pool of 915 Objaverse (Deitke et al., 2023) assets and spawned with varying poses
and arrangements. For our opening and closing tasks, we procedurally generate articulated doors and
drawers with randomized geometrical parameters at run-time. Across all three tasks, additional diversity
is introduced by randomizing surface textures and adding distractor objects. Additional details on the
assets and the randomization employed are provided in App. Section A.4.

4. Evaluating CAP

5 scenes X 5 objects

Figure 5: Evaluation environments for CAP. Each scene and object combination has 10 trials, so Pick
checkpoints are evaluated for 250 episodes and Open or Close checkpoints are evaluated for 100 episodes.

We evaluate the zero-shot generalization performance of Contact-Anchored Policies in diverse real
and simulated environments, across multiple robot embodiments, including independent third-party
evaluations at three external institutions. Our experiments are designed to answer the following questions:

How well does CAP generalize zero-shot to unseen environments and objects?

Can CAP work across robot embodiments out of the box?

Can CAP be used to compose long-horizon manipulation behavior with tool calling?

Do simulated evaluations of CAP reflect its real-world performance, and if so, can we use it to get
detailed understanding of our policy performance?

W=
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4.1. Zero-shot Environment Generalization

We evaluate CAP on the three core manipulation tasks represented in our dataset: Pick, Open, and
Close. All evaluations are zero-shot on unseen environments with no additional fine-tuning. We manually
provide the policy with oracle contact prompts to isolate the generalization performance of CAP.

4.1.1. Pick

We evaluate CAP in five unseen scenes (kitchen, couch, meeting room, storage cabinet, work area) on
the Stretch 3 platform. For each scene, we present the policy with a set of five objects not seen during
training, for total 25 objects (Fig. 5). The policy attempts to pick up each of the objects for 10 trials,
randomizing the robot’s initial position by 16 x 11cm (horizontal x vertical), for 250 total trials.

4.1.2. Open & Close

We evaluate CAP on five cabinet doors and five drawers unseen during training (Fig. 5), on Stretch 3.
The policy attempts to open and close each door and drawer for 10 trials, randomizing the robot’s initial
position by 16 x 11cm (horizontal x vertical), for 100 total trials. With oracle contact prompts, CAP

Table 1: Evaluation results of CAP and baselines on our three different tasks and four different robot
embodiments.

Task Robot Model Success rate
Pick Stretch CAP + Retry  90.4% + 6.0%
Pick Stretch CAP 83.2% + 7.9%
Pick Stretch AnyGrasp 46.7% + 7.9%
Pick Franka CAP 79.0% + 10.9%
Pick Franka CAP-VLM 81.0% + 9.2%
Pick Franka T0.5-DROID 25.0% £ 15.2%
Pick XArm CAP 83.0% £ 17.9%
Pick UR3e CAP 70.0% + 15.2%
Open Stretch CAP + Retry  91.0% + 5.3%
Open Stretch CAP 81.0% + 10.7%
Open Stretch Stretch-Open  58.0% + 29.3%
Close Stretch CAP + Retry  98.0% + 3.0%
Close Stretch CAP 96.0% + 3.5%
EgoGym-Pick Sim Gripper CAP 79.88% + 1.1%
EgoGym-Pick Sim Franka 70 5-ppom 20.9% +1.1%

generalizes zero-shot to unseen environments, achieving a single-try performance of 83% in Pick, 81% in
Open, and 96% in Close (Table 1).

Next, to set up fully autonomous rollouts, we evaluate whether we can autonomously generate contact
prompts comparably to a human oracle. To propose contact anchors autonomously, we use Gemini
Robotics-ER 1.5 (Team et al., 2025). We provide the VLM with the initial observation, and prompt
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it to point to the task object for the contact anchor (see App. Section A.3 for details). We evaluate
CAP with the same procedure described above. With VLM-generated contact anchors, CAP achieves
a comparable single-try performance of 81% in Pick, 80% in Open, and 97% in Close, validating that
automatic, VLM-generated contact prompts work as well as the human oracle.

Oracle vs VLM-Generated Contact Anchor

83%
81%

81%

MI

80%

96%
97%
0% 20% 40% 60% 80% 100%

Close Open Pick

|

B Oracle []Vision-language Model

Figure 6: Comparison of contact instructions generated by human oracles and vision-language models
for the CAPs. Downstream CAP performance is comparable on all tasks.

As we establish in Fig. 6 that CAP does not require a human in the loop, we add a VLM verifier for
automatic retry upon failure. Following Etukuru et al. (2025), we use GPT-4o0 to verify whether the policy
has successfully completed the task, using VLM-generated contact anchors for retries. We evaluate CAP
with the same criteria above, allowing up to 10 retries per trial. With automatic retries, CAP achieves
90% in Pick, 91% in Open, and 98% in Close (Table 1, Fig. 1). The vast majority of failures are from
verifier false positives, i.e. classifying a failed task as successfully completed.

4.2. Zero-shot Embodiment Generalization

Since Contact-Anchored Policies are trained on handheld gripper data, they are theoretically compatible
with any robot arm with six or more degrees of freedom. However, often because of idiosyncrasies in
human behavior, policies trained with handheld tools have difficulty transferring to real robots by taking
actions that violate robot kinematics. To validate cross-embodiment performance, beyond our primary
embodiment in Stretch, we also evaluate our Pick policy on Franka FR3, XArm 6, and Universal Robotics
UR3e (Fig. 7). For these evaluations, the same policy checkpoint is evaluated everywhere, and we only
adapt our robot gripper mount and the inverse kinematic controller to the specific embodiments. Since
these robots are mounted, we evaluate in the fixed environment with two sets of five unseen objects for a
total of 10 objects, randomizing the object positions. The policy attempts to pick up each object for 10
trials, for a total of 100 trials. We see from Fig. 8 that their success rates are comparable, showing the
versatility of our policy. Out of the arms, UR3e achieves the lowest success because of its particularly
short reach forward.

4.2.1. External evaluations

Cross-embodiment evaluations of this kind are a test of system integration as much as they are of policy
capabilities. We send our checkpoints and evaluation process to external collaborators at Hello Robot,
UCLA, and Ai2 for independent evaluations. As we see in Fig. 8, result of such evaluations also broadly
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UR3e XArm
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Figure 7: Cross-embodiment deployment of CAP on a Franka FR3, XArm 6, Universal Robotics UR3e, and
an iPhone app. For the robots, the same CAP checkpoint generates EE-space motion that we translate
to joint position control with IK. For the iPhone, the user is prompted to move the iPhone to where the
robot should go next.
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Figure 8: Evaluation of CAP zero-shot on diverse embodiments: each bar is a different set of evaluations
in a unique site. To evaluate system robustness, we share checkpoints, setup instructions, and evaluation
methodology to external collaborators and get performance numbers from them.
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line up with internal evaluations.

4.2.2. iPhone evaluations

Even before running a policy on the robot, it can be useful to understand if a policy will behave sensibly
in a scene. Since our model has only 52 million parameters, we can deploy and infer from it in real time
on modern iPhones. We develop an iPhone app that uses the camera as input stream, the ARKit API
for pose tracking, and neural engine chips for inference. We rely on user taps for contact conditioning,
and emulate a dummy robot gripper on screen to match observations. When a user taps on a target
object, the app shows the next target position of the phone, as well as the predicted gripper motions. The
app is able to show the user how CAP would navigate an in-the-wild scene and execute different grasps
matching the target object affordance.

4.3. Baseline Comparisons

We compare CAP with state-of-the-art task-specific and generalist baselines:

* 7, 5-prOID (Physical Intelligence Team et al., 2025) (Pick): a generalist VLA model trained on a large
proprietary dataset and fine-tuned on DROID (Khazatsky et al., 2024). We evaluate it on the DROID
embodiment with a Robotiq 2F85 gripper mounted on a Franka FR3, a ZED Mini wrist camera, and a
ZED 2i external camera. We use the prompt “pick up the {object}” and run the policy for 400 steps.

* AnyGrasp (Fang et al., 2023) (Pick): an RGB-D grasp pose prediction model for object pickup that uses
an external depth camera to generate grasps and then uses a planner to execute them. We evaluate it
on the Hello Robot Stretch 3 robot platform.

* stretch-open (Gupta et al., 2024) (Open): a modular pipeline for opening doors and drawers. The
pipeline uses an RGB-D head camera to locate the handle, and generates and executes a motion plan
to open it. We evaluate it on the Hello Robot Stretch 3 robot platform with the stock gripper to exactly
match the embodiment in (Gupta et al., 2024).

We evaluate AnyGrasp with the same Stretch 3 evaluation procedure as described in Section 4.1.1 for
three trials per object, for a total of 75 trials. We evaluate 7, s_prgp With the Franka FR3 evaluation
procedure as described in Section 4.2. For a fair comparison, we also evaluate CAP with VLM-generated
contact anchors with the same object description given to 7, s—-prg1p, denoted as CAP-VLM in Table 1.
AnyGrasp achieves a 47% success rate, and 7, s—prg1p achieves a 25% success rate in our evaluations.
stretch-open achieves a 58% success rate. As shown in Table 1, CAP outperforms comparable baselines
by 23% to 56%.

4.4. Eliciting Complex Behaviors with Tool Calling

A standard argument for using large, end-to-end behavior policies is that theoretically they can exhibit
long-horizon behavior that is unavailable to atomic utility models. However, because they are atomic, we
posit that utility models can be chained together as a sequence of tool calls (Schick et al., 2023) by a
larger model specializing in System 2 intelligence.

In Fig. 6, we verify that such models are able to generate contact conditions almost as well as a
human for all three of our tasks. As a proof of concept, we take CAPs with verifier guided retrying and

11
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Figure 9: Performing long-horizon manipulations with Contact-Anchored Policies controlled by a high-
level VLM controller via tool-calling. On the top, to retrieve coffee beans from cabinet, a controller
combines Pick, Open, and Close CAPs, while on the bottom, a table cleanup is performed with Pick CAP.

add a supervising high-level controller to get our robots to complete complex, long-horizon tasks as seen
in Fig. 9. We perform two long horizon tasks: fetching some coffee beans from a kitchen cabinet, and
cleaning up a table. In the first task, the robot’s goal is to retrieve a yellow bag of coffee beans from
within the white kitchen cabinets. The robot needs to open the cabinet door, pick up the bag, drop it
on the table, and close the door. In the second task, there are multiple objects on a table in front of the
robot, and it has to move all of them into a bin next to it. The robot needs to perform a sequence of picks
and drops until the table is clear. We use our trained Pick, Open, and Close policies, as well as scripts for
executing “Drop” and “Move the mobile base”. We run 10 experiments for each task.

Table 2: Success rate by stages for long-horizon tasks

Get coffee beans Clear table
Stage Success Stage Success
Open cabinet  10/10 1st Object 10/10
Pick bag 7/10 2nd Object  10/10
Drop bag 7/10 3rd Object 10/10
Close cabinet 6/10 4th Object 10/10

5th Object 10/10

12
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Our compositional policy succeeds 6/10 trials on the coffee beans task, and 10/10 trials on the table
cleaning task. Table 2 describes the success rate by stages. For the coffee fetching task, most failures
are from the policy opening the door partially, which the VLM verifier counts as a success, leading to
hardware collisions with the door during the Pick stage. For the table cleaning task, the verifier can
classify a successful grasp as a failure, leading to unnecessary retries, but the policy was able to move all
objects into the bin for all 10 runs.

4.5. Understanding Real Performance via Simulation

Establishing Sim-and-real Correlation To confirm whether CAPs behavior in EgoGym is indicative of
real-world performance, we carry out a single-blind correlation study in which an evaluator, unaware of
EgoGym results, is sent four Pick CAP checkpoints to evaluate in the real world. The evaluations includes
250 real-world runs and 5000 EgoGym episodes, which include texture and objects augmentation as
well as four random distractor objects per episode. While the real evaluation numbers are limited, the
results in Fig. 10 (left) suggest strong alignment between EgoGym and real-world performance across
the checkpoints. For the rest of this section, we describe these four checkpoints with letters A through D
in order of success rates.

Sim-to-Real Correlation o0 Failure Modes
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Figure 10: Left: Sim-to-real correlation for single-blind EgoGym-Pick evaluations. Right: Analysis of
failure modes of four iterations of CAP Pick checkpoints in EgoGym. With feedback from each iteration,
our pipeline changes allowed better policy quality in real and sim.

Iterating CAP via failure analysis To better understand how policy behavior evolves across checkpoints,
we analyze failure modes using EgoGym rollouts. Details of the failure categorization are provided in
App. Section A.4. Figure 10 (left) shows the distribution of outcomes over 5000 simulated episodes for
each analyzed checkpoint.

These observed failure modes motivated refinements to the CAP data processing pipeline. For example,
the low-lift failures at checkpoint B revealed the existence of many post-grasp transitions with little or no
end-effector motion, motivating us to introduce static-frame filtering which resulted in the following C
checkpoint.
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4.6. Ablations

We run ablation experiments to answer two questions related to Contact-Anchored Policies’ performance:

* How important is the contact anchor? How does CAP compare with an RGB-only policy?
* How does policy performance change as we increase distractor objects in the Pick task?

4.6.1. Contact anchor ablation

Table 3: Ablation results of CAP on the Close task.

Model Success rate
CAP - RGB Only Ablation  58% + 28.2%
CAP 96% + 3.5%

To ablate the contact anchor, we choose the Close task since the task objective (an open door or
drawer) is visually apparent without ambiguity, even without the contact anchor conditioning. We train
an RGB-only ablation of CAP, and run the same evaluation procedure as described in Section 4.1.2. While
the vanilla CAP achieved 96% on the Close task, the RGB-only ablation performed much worse at 58%
(Table 3), validating our hypothesis that having a contact anchor improves manipulation performance.

4.6.2. Distractor objects and policy performance

EgoGym-Pick Relative Drop in Success vs Number of Distractors
0%

-10%

-20%

-30%

Relative Drop in Success Rate

-40%
0

1 2 3 4
Number of Distractor Objects
W CAP + Oracle W CAP + Gemini-ER ' m-0.5

M CAP + Moondream M CAP + Molmo

Figure 11: Relative success rate as a function of visual distractors for CAP and 7y 5 models on EgoGym-
Pick. Success rates are normalized to each model’s performance with zero distractors.

We evaluate CAP with various VLMs for contact prompt generation, as well as 7, ;-prgp in the
EgoGym-Pick environment. The baseline CAP with privileged oracle contact anchor information remains
stable in performance regardless of distractor objects. We see a decrease in performance for CAP + VLMs
and 7y 5, picking up more wrong objects as we increase the number of distractors in the scene.
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5. Related Works

5.1. Generalist Behavior Models

Current progress in learning-based robotic systems and advent of large-scale data in robotics has enabled
development of general robot manipulation policies: models that can be applied to novel scenes, objects,
tasks, or robots without having trained on the same (Black et al., 2024; Hu et al., 2024; Etukuru et al.,
2025; Physical Intelligence Team et al., 2025). In most cases, the standard recipe requires creating and
training on a large training set which contains diversity in the intended axes of generalization. Note that
this paradigm is different than many large robotic models in literature (Team et al., 2024; Barreiros
et al., 2025; Bjorck et al., 2025; Lee et al., 2025; Shukor et al., 2025) which do not claim zero-shot
performance and requires some post-training in the particular evaluation setup (task, scene, or robot) to
show reasonable behavior in that setup.

Current understanding on the necessary and sufficient amount of scale in data, model size, or compute
for such generalization is still in its infancy. Existing multi-task generalist models, mostly proprietary,
uses at least 1,000 to 10,000 hours of data, while single-task general policies such as (Chi et al., 2024;
Hu et al., 2024; Etukuru et al., 2025) has been trained on as little as 1,000 demonstrations per task.

5.2. Conditioning Multi-modal Behavior Models

A general policy capable of multiple possible behaviors in a particular environment needs to be conditioned
by user intent or goal to elicit useful behavior. Earliest forms of conditioning behavior policies relied on
communicating a future state or image (Lynch et al., 2020; Cui et al., 2022; Bousmalis et al., 2023) to
the robot. With the rise of capable language models, language became a popular mode for conditioning
language starting with (Lynch and Sermanet, 2020; Jang et al., 2021; Brohan et al., 2022, 2023). In
these works, language is used directly as an input modality to the model. However, advent of multimodal
grounding models such as (Radford et al., 2021) allowed (Shafiullah et al., 2022b; Shridhar et al., 2022a,b)
to ground language in some spatial conditioning as an input to the robot. Other low-dimensional policy
conditioning include (Gu et al., 2023; Sundaresan et al., 2024) where robot tranjectory and a sketch
of the goal is used to condition the model. The most related to our work is RT-trajectory (Gu et al.,
2023), where gripper motion and articulation hindsight relabelling was used to condition a model. Our
method simplifies the premise to focus only on the contacts between the robot and the environment as
the minimal interface, and shows that it already leads to strong general behavior models. Another line of
work uses keypoints extracted by pretrained models to give robots generalization abilities (Bharadhwaj
et al., 2024; Huang et al., 2024; Haldar and Pinto, 2025; Levy et al., 2025). However, they forgo the
pixel-to-action paradigm by using only keypoints as observation or using a planner to generate robot
actions.

5.3. Evaluating Real Manipulation Policies in Simulation

One of the biggest bottlenecks in training policies for real robot is evaluation (Zhou et al., 2023): training
or test losses are unindicative of policy success, and getting statistically significant effect sizes require
onerous evaluation schedules (Barreiros et al., 2025). Therefore, there has been significant interest in
using simulated setups to evalute real robot performance (Li et al., 2024b; Barreiros et al., 2025; Jain
et al., 2025; Jangir et al., 2025). A shared focus of these works is to start from some ground-truth real
world environments and then model them as closely as possible in simulations. This focus on simulation
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fidelity purportedly serves to ensure transfer of simulated evaluation results to real world. But even
minor differences between sim and real can make it difficult to hill-climb a simulation metric that will
lead to real world improvement (Barreiros et al., 2025). Note that, these simulation benchmarks have a
different goal than (Liu et al., 2023; Li et al., 2024a; Nasiriany et al., 2024) where the goal is to compare
different learning algorithms trained on a fixed set of data and not general task competence.

In this work, we instead look at factored, single task simulation with many procedurally generated
scenes, which makes overfitting to this metric difficult. Indoor navigation has successfully used this
approach (Eftekhar et al., 2024) through simulations providing a large number of household environ-
ments (Kolve et al., 2017; Savva et al., 2019; Deitke et al., 2022).

6. Conclusion

In this work, we introduce Contact-Anchored Policies (CAP), a principled way of conditioning general
policies that achieves superior zero-shot performance on single tasks with a modestly sized dataset, model
size, and compute budget. We additionally demonstrate how we can develop such CAPs with simulation in
the loop, and also chain together CAPs via tool calling to perform long-horizon manipulations. With CAP,
we hope to provide the right framework for researchers with limited resources, such as those in academia,
to study the emergence of general behavior in robotics. While CAP makes advances in the problem of
learning general manipulation policies, we are only able to scratch the surface and there are many aspects
of CAP that we think should be studied in future work. Firstly, extending CAP to tasks with multiple
contact anchors or for bimanual tasks would be useful, and will require extending the system to predict
and ingest multiple contacts or even a distribution of them. Secondly, CAPs rely on two input modalities,
and studying the process through which they decide on their relative weights in the decision making
may elucidate fundamental factors about the dynamics of supervised policy learning itself. Finally, as a
practical matter, exploring how we could roll the verifier guided retrying process into the end-to-end
part of the policy via either real world or simulated reinforcement learning would go a long way into
making CAPs practical for high-stakes applications.
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A. Appendix

A.1. Data collection details
A.1.1. Visual gripper state estimation by SAM2

We resize the video observation to 256 x 256. At the start of each video, the gripper is fully open. We
prompt SAM2 with positive points (green) belonging to the gripper, and negative point (red) outside
the gripper, shown in Fig. 12, to generate a gripper segmentation mask for all frames. We compute the
center of mass of the left and right gripper from the binary mask. The horizontal pixel distance between
these two centers represents the gripper aperture, linearly mapped to 0 (fully closed) to 1 (fully open).

A.1.2. Data Filtering and Augmentation

Static Frame Filtering We filter out frames where the gripper does not significantly move. Starting
from the first frame, we scan forward and select a new frame when the cumulative movement exceeds
0.3cm in translation, 0.1 radians in rotation, or 0.05 in gripper aperture.

Trajectory Mirroring We apply horizontal flips on each recorded demo for both Open and Close tasks.
We keep the original trajectory, and a horizontally mirrored copy of the trajectory with flipped visual
observations and end effector poses.

A.2. Policy training details
A.2.1. Visual encoder pretraining

We pretrain ResNet-50 backbones with MoCo (He et al., 2020) on recorded RGB observations. The
Pick encoder is trained on frames from 14,606 demonstrations (16.3 hours) across 289 environments,
while the Open/Close encoder is trained on frames from 5,759 demonstrations (6.7 hours) across 135
environments.

Table 4: Hyperparameters used for Pick, Open, and Close tasks

Hyperparameter Pick Open Close
Obs window size 3 3 3
Training Steps 308,565 364,811 277,522
Batch Size 256 200 200
Learning Rate 3e-4 le-4 2.7e-4
Transformer Depth 8 8 8
Attn Heads 8 8 8
Embedding Dim 512 512 256
VQ-VAE codebook size 16 32 32
VQ-VAE embedding dim 512 512 512
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Figure 12: Pipeline for Extracting Gripper Label By Using SAM2
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Figure 13: Real robot configurations corresponding to each starting pose
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Figure 14: Robot starting poses in the base-height parameter space

A.3. Policy deployment details

For policy deployment on Stretch, we run inference at up to 2Hz directly on CPU on the onboard Intel
NUC. For deployment on xArm, Franka, and other fixed embodiments, we run inference on an NVIDIA
RTX A4000 GPU.

All evaluation objects and environments used in Pick, Open, and Close are unseen during training.
See Figure Fig. 19 for the 25 objects used Pick evaluation.

For each object used in the Pick and each door and drawer used in the Open and Close, we have 10
trials. Correspondingly, we start the robot at 10 initial positions depicted in Fig. 14, Fig. 13.
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A.3.1. Evaluation object details

For the Pick task, see Fig. 19 for a display of the 25 objects used for evaluation. For the Open and Close
tasks, see Fig. 5 for a display of the five doors and five drawers used for evaluation.

A.4. Simulation: EgoGym details

Available environments EgoGym provides three Gymnasium environments:

* EgoGym-Pick-v0: a tabletop pick-and-lift task.
* EgoGym-Open-v0: opening an articulated object.
* EgoGym-Close-v0: closing an articulated object.

Figures 15 and 16 show visualizations of the EgoGym Pick and Open/Close environments.

Environment initialization arguments Each environment is configurable through a set of arguments.
The robot embodiment can be either CAP or DROID, and actions can be (relative) or (absolute). The scene
is populated by sampling from a specified object set.

Optionally, environments can be wrapped with a VLM to provide unprivileged perception. Supported
models include Moondream (vik, 2024), Gemini-Robotics-ER-1.5 (Team et al., 2025), and Molmo (Deitke
et al., 2024). When no wrapper is used, the policy has privileged access to object identity.

Figure 16: EgoGym Open/Close environment visualizations

26



Contact-Anchored Policies: Contact Conditioning Creates Strong Robot Utility Models

Observations All tasks expose a shared visual and proprioceptive observations. For the DROID embodi-
ment, joint positions are additionally provided. In the Pick task, the observation includes the pose of
the target object. In the Open and Close tasks, the observation instead includes the pose of the object’s
handle.

Rewards Each environment provides a simple dense reward signal. In the Pick task, reward is given by
the vertical displacement of the target object relative to its initial placement. In the Open task, reward
corresponds to the fraction of the articulated object that has been opened. In the Close task, reward is
computed as a residual-to-closed score from the object’s opening percentage.

VLM Distractor evaluation protocol For the Pick task, we evaluate robustness to distractors by varying
the number of objects in the scene from one to five, across different VLMs. Evaluation is performed over
5,000 episodes. Episodes are considered successful if the maximum reward exceeds a threshold of 0.03.
All experiments use a maximum horizon of 80 steps.

mo.5 baseline (Pick) We additionally evaluate the 7 5 baseline on EgoGym-Pick-v0 using the pi05_droid_jointpos
checkpoint hosted at gs://openpi-assets/checkpoints. These experiments use a task horizon of
350 steps. Evaluation is performed over 5,000 episodes with the same success threshold as above.

Failure mode classification (Pick). We assign each episode to exactly one outcome using an ordered
decision tree (first match wins):

1. Success: Maximum lift > 0.03m.

2. Did not lift enough: The gripper fingers contacted the target object at least once and maximum
lift > 0.005m (> 0.5cm), but not successful.

3. Object touched but not grasped: The gripper fingers contacted the target object at least once, but
did not lift.

4. Picked wrong object: The gripper fingers contacted a non-target object at least once, but never
contacted the target object (i.e., only distractor contact).

5. Empty Grasp: None of the rules above triggered, but the episode ends with the gripper in a closed
state or the gripper fingers made contact with each other, indicating a close-on-nothing.

6. Did not grasp: None of the above (no meaningful contacts).

Integration into the training loop EgoGym is integrated into the training loop to periodically evaluate
task success rates, since loss alone is not a reliable indicator of policy performance. Figures 17 and 18
show example CAP training runs, reporting simulation success rate alongside loss for the Pick and Open
tasks, respectively.
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EgoGym-Pick Success Rate vs Loss
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Figure 18: Training loss and simulation success
rate over time for the Open task during a CAP
training run.

Figure 17: Loss and simulation success rate over
time for the Pick task during a CAP training run.
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Figure 19: Evaluation objects used for the Pick evaluations
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